Модуль центрального процессора

МЦП-LX800-3U

ГФКП.467444.028

Техническое описание

1 Назначение изделия, особенности поставки	3
1.1 Назначение изделия	3
1.2 Особенности поставки	3
2 Технические характеристики модуля	4
3 Состав и назначение функциональных узлов	6
3.1 Центральный процессор	7
3.2 Память	
3.3 Порт видео	9
3.4 Последовательные порты СОМ1, СОМ2, СОМ4 (RS232)	9
3.5 Последовательный порт СОМЗ (RS232/ RS422/485)	9
3.5 Дискретный ввод/вывод	10
3.6 Порты Ethernet	11
3.7 RTC и CMOS + SFRAM	11
4 Разъемы и джамперы изделия	12
4.1 Разъемы	12
4.2 Установка перемычек (джамперов)	19
4.3 Диагностические светодиоды	19
6 Распределение адресного пространства	21
5 Прерывания	
6 Программа настройки BIOS (BIOS SETUP)	23
6.1 Main Menu (Главное меню)	23
6.2 Basic CMOS Configuration (Настройка основных параметров BIOS)	24
6.3 Features Configuration (Дополнительные настройки)	25
6.4 Custom Configuration (Настройки пользователя)	
6.5 Specific Configuration	
6.6 PnP Configuration (Haстройка Plug-and-Play)	
6.7 Shadow configuration (Настройка теневой памяти)	
6.8 Остальные разделы Главного меню	
ПРИЛОЖЕНИЕ Программное обеспечение	

1 Назначение изделия, особенности поставки

1.1 Назначение изделия

Модуль центрального процессора МЦП-LX800-3U (далее по тексту модуль) является РСсовместимым компьютером формата CompactPCI в конструктиве Евромеханика 3U. Архитектура модуля базируется на центральном процессоре AMD Geode LX800 и на его компаньоне – микросхеме ввода-вывода AMD Geode CS5536.

Модуль имеет полную совместимость с PC программным обеспечением и стандартными операционными системами MS DOS, Windows XP, Linux, QNX.

1.2 Особенности поставки

Условное обозначение изделия при его заказе и в конструкторской документации другого изделия, в котором оно применяется –

«Модуль центрального процессора МЦП-LX800-3U-А ГФКП.467444.028», где

А – тип исполнения, принимающий значения:

- С – исполнение с приемкой ОТК,

- I – исполнение с приемкой ОТК, расширенным температурным диапазоном и покрытием лаком,

- М – исполнение с приемкой представительства Заказчика, расширенным температурным диапазоном и покрытием лаком.

Температурные диапазоны исполнений следующие:

- повышенная температура среды предельная /рабочая
 для исполнения С
 н70/+55°С,
 для исполнений I, М
 н70/+60°С;
- пониженная температура среды предельная /рабочая
 для исполнения С минус 40/ минус 20°С,
 для исполнений I, М минус 60/ минус 40°С.

2 Технические характеристики модуля

- 2.1 Основные технические характеристики и подключаемые интерфейсы следующие:
- 1) Процессор AMD Geode LX800 (500 МГц):
 - 32-разрядное х86 ядро,
 - 64-разрядный сопроцессор,
 - 64-разрядная шина памяти,

– кэш-память первого уровня – 128 Кбайт (64 Кбайт область программ, 64 Кбайт область данных),

- кэш-память второго уровня 128 Кбайт,
- с поддержкой MMX[®], 3Dnow!TM;
- 2) Шины расширения:
 - 32 разрядная (ЗЗМГц) РСІ шина.
- 3) Оперативная память DDR SDRAM емкостью 256 Мбайт, разрядность 64 бит;
- 4) Flash-память BIOS емкостью 2 Мбайт;
- 5) Энергонезависимая память SFRAM для хранения системной конфигурации (CMOS):
 возможность работы без литиевой батареи питания;
- 6) NAND Flash емкостью 512 Мбайт с IDE интерфейсом;
- Порт подключения IDE HDD возможность подключения одного устройства НЖМД (HDD или CD-ROM, DVD-ROM);
- 8) Контроллер FD возможность подключения одного устройства НГМД (FDD);
- 9) Видеоконтроллер:
 - возможность подключения LCD панелей, имеющих интерфейс LVDS с разрешением до 1024х768 (60 Гц) и с разрядностью 18 бит;
 - возможность подключения мониторов RGB (VGA) с разрешением до 1600х1200 (85 Гц).
- 10) Два ведущих порта USB:
 - поддержка загрузки ОС с FLASH-накопителя USB,
 - поддержка спецификаций USB 1.1, USB 2.0;
- 11) Последовательные порты:
 - СОМ1: RS232, девяти проводной (полный), с защитой ±15кВ; с возможностью консольного ввода/вывода, со скоростью обмена данными не более 115,2 Кбит/с;
 - СОМ2: RS232, пяти проводной, с защитой ±15кВ; с возможностью консольного ввода/вывода, со скоростью обмена данными не более – 115,2 Кбит/с;
 - СОМ3: перенастраиваемый RS232 / RS422/485 с защитой ±15кВ;
 - СОМ4: RS232, трех проводной, с защитой ±15кВ, со скоростью обмена данными не более – 115,2 Кбит/с;
- 12) Два канала Ethernet 10/100 Мбит/с;
- 13) Порт клавиатуры и мыши PS/2;
- 14) Дискретный ввод/вывод (8 входов, 8 выходов);
- 15) Два пользовательских светодиода;
- 16) Внешние сигналы:

– возможность использования внешнего сигнала РМЕ для пробуждения модуля из «спящего» режима:

- внешние сигналы RESET и PWR_BUT;

– возможность подключения литиевой батареи питания для часов реального времени..

2.2 Электрические характеристики модуля

Электрическое питание модуля должно соответствовать следующим требованиям:

- Входное напряжение От +4,75 B до +5,25 B;
- Время нарастания входного напряжения до уровня +4,75В не более 10 мс.

Максимальный ток потребления модуля по цепи +5 В составляет 1,5 А. Типичное значение тока потребления модуля при различных значениях частоты процессора/ памяти приведено в таблице 1.

Таблица 1

Значение частоты процессора/памяти, МГц	Ток потребления, А
266/266	1,00
300/266	1,03
333/333	1,08
400/266	1,12
400/333	1,14
500/333	1,18

Питание модуля осуществляется через системный разъём CompactPCI J1 (X17), а также возможна подача питания через разъём на плате X16.

3 Состав и назначение функциональных узлов

Структурная схема модуля МЦП-LX800-3U приведена на рисунке 1.

Модуль содержит центральный процессор AMD Geode LX800 и его компаньон AMD Geode CS5536, оперативную память DDR SDRAM, Flash BIOS, Flash Disk с интерфесом IDE, энергонезависимую память SFRAM, микросхему LPC Super I/O, приемопередатчики интерфейсов RS232 и RS422/485, два контроллера Ethernet и периферию.

Рисунок 1 Структурная схема модуля МЦП-LX800-3U

3.1 Центральный процессор

Процессор фирмы AMD серии Geode LX800 с тактовой частотой 500 МГц и потреблением 1,8 Вт (максимальная рассеиваемая мощность 3,9 Вт), включает в себя 32-х разрядное х86 ядро, 64 бит сопроцессор, 64-х разрядную шину памяти (DDR), видеоконтроллер с поддержкой VGA и TFT дисплеев. Блок-схема процессора AMD Geode LX800 приведена на рисунке 2.

LX процессор используется совместно с чип-компаньоном CS5536 (AMD), который имеет один канал IDE интерфейса, четыре канала USB интерфейсов, два UART, LPC и т.д. Блоксхема AMD Geode CS5536 приведена на рисунке 3.

Рисунок 2 Блок-схема процессора AMD Geode LX800

АТ совместимость:

- два DMA контроллера типа 8237 с 32-разрядной адресацией,
- два контроллера прерывания типа 8259-А,
- один таймер типа 8254.

Рисунок 3 Блок-схема AMD Geode CS5536

3.2 Память

3.2.1 Память DDR SDRAM

В модуле установлены четыре микросхемы динамической оперативной памяти типа DDR 333. Общий объём оперативной памяти составляет 256 Мбайт (32Мх64).

Примечание – Возможна установка памяти объемом 512 Мбайт.

3.2.2 Flash BIOS

Flash-память BIOS объемом 2 МБайт реализована на микросхеме SST49LF160C. Для исполнений модуля "I" и "М" микросхема запаивается на плате, для исполнения "С" устанавливается в 32х контактную панель PLCC32.

3.2.3 Flash NAND

Flash NAND память емкостью 512 Мбайт, подключённая к стандартному ATA/IDE интерфейсу, реализована на микросхеме SST85LD0512-60. Распознается операционной системой как обыкновенный жесткий диск и может использоваться в качестве загрузочного диска.

3.2. 4 Подключение внешних IDE-устройств

К модулю может быть подключено одно внешнее устройство IDE (жесткий диск HDD, CD-ROM, DVD-ROM), имеющее 40-контактный разъём с шагом 2,54 мм. Подключение устройства IDE приведено в таблице 11.

Примечание – Если накопитель Flash NAND используется, то внешнее устройство IDE должно быть подключено в режиме Slave.

3.3 Порт видео

Порт видео реализован в модуле на базе встроенного в процессор LX800 видеоконтроллера. Видеоконтроллер с функцией 2D-акселератора имеет следующие технические характеристики и возможности:

– объём видеопамяти не более 60 Мбайт (выделяется из системной памяти и используется для нужд видеоконтроллера, больший объём выделенной памяти видеоадаптера определяет меньший объём доступной для использования оперативной памяти, рекомендуется использовать значение, установленное в BIOS SETUP модуля по умолчанию);

– возможность подключения мониторов RGB (VGA) с разрешением до 1600х1200 точек (85 Гц), цвет 32 бит;

– возможность подключения LCD панелей с интерфейсом LVDS, с разрешением до 1024х768 точек (60 Гц) и глубиной цвета 18 бит;

- одновременный вывод видео на VGA монитор и LCD панель.

3.4 Последовательные порты СОМ1, СОМ2, СОМ4 (RS232)

Порт COM1 работает в режиме девяти проводного (полного) интерфейса RS232, COM2 – в режиме пяти проводного интерфейса RS232, COM4 – в режиме трех проводного интерфейса RS232. Все порты имеют стандартные для PC/AT базовые адреса.

Порты COM1 и COM2 могут использоваться для консольного ввода/вывода и загрузки файлов (по умолчанию используется порт COM1). Для связи с ПК, используемым в качестве гипертерминала, при подключении к COM1 необходим стандартный нуль-модемный кабель, при подключении к COM2 – кабель-переходник (распиновку COM2 на разъеме X18 см. в таблице 5). Программа гипертерминала, поддерживающая консольный ввод-вывод на ПК, должна быть настроена в следующем режиме: скорость передачи 115200 бит/с, 8 информационных бит, проверка четности выключена, 1 стоповый бит. Порты полностью программно совместимы с моделью UART 16550.

В качестве приемопередатчиков служат микросхемы линейных драйверов фирмы MAXIM, которые обеспечивают работу с уровнями выходных сигналов ± 9В. Все каналы под-ключены в линию через микросхемы MAX211EAI.

3.5 Последовательный порт СОМЗ (RS232/ RS422/485)

Порт СОМЗ работает в режимах интерфейсов RS232 (по умолчанию) или RS422/485. Максимальная скорость передачи данных – 115,2 кбит/с.

СОМЗ подключен в линию через микросхему MAX3161EAG. Режим интерфейса задается с помощью сигнала RS485/RS232#. Для работы по RS485/422 необходимо установить перемычку JP9 (высокий уровень сигнала RS485/RS232#). Для работы по RS232 перемычка JP9 не устанавливается (низкий уровень сигнала RS485/RS232#).

С помощью сигнала HDPLX задается режим работы RS422 (низкий уровень сигнала HDPLX) или RS485 (высокий уровень сигнала HDPLX).

Для установки режима FULL-DUPLEX (режим работы RS422) перемычка JP8 не требуется. Выходная линия на передачу подключается к контактам T+, T-, а выходная линия на прием подключается к контактам R+, R- разъема X18.

Для установки режима HALF-DUPLEX (режим работы RS485) необходимо установить перемычку JP8. Выходная линия подключается к контактам T+, T- разъема X18.

Управление передатчиком интерфейсов RS422/485 порта COM3 осуществляется при помощи линии GPIO5 порта GPIO микросхемы чип-компаньона CS5536 модуля. Установка линии GPIO5 в состояние логической "1" соответствует: включению передатчика интерфейсов RS422/485, в состояние логического "0" – выключению передатчика интерфейсов RS422/485.

При помощи установки перемычки JP7 производится подключение согласующего резистора 120 Ом между дифференциальными линиями интерфейсов RS422 или RS485.

3.5 Дискретный ввод/вывод

Дискретный ввод-вывод разовых команд обеспечивает микросхема Super I/O W83627HF фирмы Winbond с интерфейсом LPC, при этом каналы дискретного ввода/вывода подключаются непосредственно к линиям порта GPIO микросхемы Super I/O (см. таблицу 2):

– вход $\rightarrow 8$ дискретных сигналов, входные уровни - ТТЛ;

 – выход → 8 дискретных сигналов с открытым коллектором с нагрузочной способностью до 12 мА на каждый канал.

Таблица 2		
Сигнал	Линия GPIO	Состояние
GPIN1	GPIO10	Вход
GPIN2	GPIO11	Вход
GPIN3	GPIO12	Вход
GPIN4	GPIO13	Вход
GPIN5	GPIO14	Вход
GPIN6	GPIO15	Вход
GPIN7	GPIO16	Вход
GPIN8	GPIO17	Вход
GPOUT1	GPIO20	Выход
GPOUT2	GPIO21	Выход
GPOUT3	GPIO22	Выход
GPOUT4	GPIO32	Выход
GPOUT5	GPIO24	Выход
GPOUT6	GPIO25	Выход
GPOUT7	GPIO26	Выход
GPOUT8	GPIO34	Выход

Для программирования линий порта GPIO микросхемы Super IO W83627HF необходимо использовать документ «W83627.PDF».

3.6 Порты Ethernet

Модуль имеет два канала Ethernet 10/100 Мб/с, выполненные на основе контроллера LU82551 фирмы Intel. Контроллер LU82551 является мастером шины PCI и имеет прямой доступ к памяти SDRAM.

Для гальванической развязки от линии связи и согласования симметричной линии со входом микросхем интерфейса Ethernet в модуле установлены трансформаторы HX1188 фирмы PULSE.

В модуле установлены светодиоды (см. подраздел 4.3), которые информируют о скорости/канале/ передаче:

Зелёный светодиод – индикатор исправности / активности. Когда канал Ethernet исправен – светодиод горит; когда исправен и идет передача или прием – светодиод мигает.

Оранжевый светодиод – индикатор скорости канала. Когда светодиод горит, скорость 100 Мбит/с, когда не горит - скорость 10 Мбит/с.

Первый канал Ethernet выведен на стандартный разъем RJ-45 на передней панели модуля, второй канал Ethernet на разъем J2 CompactPCI (X18).

3.7 RTC и CMOS + SFRAM

В модуле имеются стандартные IBM PC/AT совместимые часы реального времени (RTC), память CMOS для хранения данных часов RTC и текущих настроек BIOS SETUP, а также микросхема энергонезависимой памяти Serial FRAM с последовательным интерфейсом I²C.

Для обеспечения сохранности данных часов реального времени (RTC), а также текущих настроек параметров системной конфигурации BIOS SETUP в регистрах памяти CMOS при выключенном питании модуля используется литиевая батарея питания. Батарея подключается к модулю через разъем X9 (см. таблицу 19).

В энергонезависимой памяти SFRAM хранится резервная копия данных CMOS, поэтому в случае, когда к модулю не подключена литиевая батарея, при включении модуля текущие настройки параметров системной конфигурации BIOS SETUP автоматически восстанавливаются в памяти CMOS из микросхемы SFRAM (за исключением текущих настроек времени и даты).

4 Разъемы и джамперы изделия

4.1 Разъемы

Разъемы модуля МЦП-LX800-3U обеспечивают интерфейс к внешним устройствам, их типы и функциональное назначение приведены в таблице 3.

Габлица 5		
Обозначение на плате	Тип разъема	Функциональное назначение
X1	USBA-1J	USB порт 1
X2	PLD2-10	Интерфейс LVDS для LCD панели
X3	PLS-6	Интерфейс VGA
X4	PLS-8	JTAG (технологический)
X5	PLS2-3	Технологический
X6	PLS2-2	Внешний сигнал РМЕ
X7	PLS2-2	Внешний сигнал PWR_BUT
X8	PLS2-2	Внешний сигнал RESET_WORK
X9	PLS2-2	Внешняя батарея питания
X10	PLD-40	IDE (НЖМД)
X12	PLD-26	FDD (НГМД)
X13	PLS-8	Клавиатура, мышь
X14	PLD2-18	Дискретный ввод-вывод
X15	Вилка DRB-9MA	СОМ1 (RS232 полный)
X16	PLS-4	Разъем питания +5В
X17	17 21 110 2102 тип А	J1 Connector CompactPCI
X18	17 24 110 2102 тип В	J2 Connector CompactPCI
X20	FRJA-468 (RJ-45)	Ethernet 10/100 Мбит/с порт 1

Таблица 3

Расположение разъемов и джамперов на плате приведено на рисунке 4.

Разъемы X4, X5 предназначены для технологических целей на этапе изготовления и настройки модуля.

Рисунок 4 Расположение разъемов, джамперов и диагностических светодиодов на плате

4.1.1 Разъемы СотрастРСІ

В соответствии с архитектурой шины CompactPCI модуль использует два разъема интерфейса CompactPCI: J1 и J2. Стандарт CompactPCI электрически идентичен локальной шине PCI, но внесены усовершенствования, позволяющие использовать их в жестких условиях эксплуатации с увеличенным количеством разъемов расширения. К системному разъему CompactPCI J2 (X18) также подключены следующие интерфейсы: USB2, COM2, COM3, COM4, Ethernet 2, VGA, клавиатура, мышь, входные PK.

Назначение контактов разъемов CompactPCI приведено в таблицах 4 и 5.

Таоница і	1105110 10		eneremere pu	obema compac		
Контакт	Обозначение сигнала					
N₂	Ряд А	Ряд В	Ряд С	Ряд D	Ряд Е	Ряд F
25	+5B	REQ64#	ENUM#	3,3B	+5B	GND
24	AD1	+5B	VI/O	AD0	ACK64#	GND
23	3,3B	AD4	AD3	+5B	AD2	GND
22	AD7	GND	3,3B	AD6	AD5	GND
21	3,3B	AD9	AD8	M66EN	C/BE0#	GND
20	AD12	GND	VI/O	AD11	AD10	GND
19	3,3B	AD15	AD14	GND	AD13	GND
18	SERR#	GND	3,3B	PAR	C/BE1#	GND
17	3,3B	IPMB_SCL	IPMB_SDA	GND	PERR#	GND
16	DEVSEL#	GND	VI/O	STOP#	LOCK#	GND
15	3,3B	FRAME#	IRDY#	GND	TRDY#	GND
14					GND	
13	Зона ключа				GND	
12						GND
11	AD18	AD17	AD16	GND	C/BE2#	GND
10	AD21	GND	3,3B	AD20	AD19	GND
9	C/BE3#	GND	AD23	GND	AD22	GND
8	AD26	GND	VI/O	AD25	AD24	GND
7	AD30	AD29	AD28	GND	AD27	GND
6	REQ0#	GND	3,3B	CLK0	AD31	GND
5	BRSVP1A5	BRSVP1B5	RST#	GND	GNT0#	GND
4	IPMB_PWR	HEALTHY#	VI/O	INTP	INTS	GND
3	INTA#	INTB#	INTC#	+5B	INTD#	GND
2	ТСК	+5B	TMS	TDO	TDI	GND
1	+5B	-12B	TRST#	+12B	+5B	GND

Габлица 4	Назначение контактов системного	разъема Сот	pactPCI J1	(X17)
-----------	---------------------------------	-------------	------------	-------

Таблица 5 Назначение контактов системного разъема CompactPCI J2 (X18)

Контакт	Обозначение сигнала					
N⁰	Ряд А	Ряд В	Ряд С	Ряд D	Ряд Е	Ряд F
22	GA4	GA3	GA2	GA1	GA0	GND
21	CLK6	GND	_	_	_	GND
20	CLK5	GND	Т3-	_	RXD4	GND
19	GND	GND	T3+	RXD3	TXD4	GND
18	GND	RXD2	CTS2	TXD3	R3-	GND
17	GND	RTS2	RESET_WORK	REQ6#	GNT6#	GND
16	_	TXD2	DEG#	GND	R3+	GND
15	_	_	FAL#	REQ5#	GNT5#	GND

Контакт	Обозначение сигнала					
N⁰	Ряд А	Ряд В	Ряд С	Ряд D	Ряд Е	Ряд F
14	_	_	_	GPIN1	GPIN2	GND
13	-	VGA_AGND	VGA_HSYNC	_	_	GND
12	_	VGA_RED	VGA_VSYNC	_	USB_2P	GND
11	_	VGA_GREEN	VGA_BLUE	USB2_VCC	USB_2N	GND
10	GND_ETH2	GND_ETH2	-	GND	_	GND
9	GND_ETH2	ETH2_RX-	ETH2_RX+	ETH2_TX-	ETH2_TX+	GND
8	-	_	-	GPIN4	GPIN6	GND
7	_	_	GPIN3	GPIN5	GPIN7	GND
6	_	_	_	_	GPIN8	GND
5	GPIO6 (CS5536)	_	GND	MDATA	MCLK	GND
4	VI/O	GND	K_5VCC	KDATA	KCLK	GND
3	CLK4	GND	GNT3#	REQ4#	GNT4#	GND
2	CLK2	CLK3	SYSEN#	GNT2#	REQ3#	GND
1	CLK1	GND	REQ1#	GNT1#	REQ2#	GND

Примечания.

- 1. Сигналы, обозначенные бледным шрифтом, не подключены в модуле.
- 2. Сигналы АСК64#, REQ64#, DEG# и FAL# подключены через резисторы 4,7 кОм к 3,3В.

4.1.2 Разъемы передней панели

Вид передней панели изделия показан на рисунке 5.

Рисунок 5 Расположение разъемов и светодиодов на передней панели

Подключение полного (девяти проводного) интерфейса RS232 порта COM1 производится с помощью стандартной вилки DRB9M. Обозначение разъема COM1 – X1 на передней панели, X15 на плате. Назначение контактов разъема COM1 приведено в таблице 6.

Таблица 6 Н	аблица 6 Назначение контактов разъема COM1			
Контакт	Сигнал	Контакт	Сигнал	
1	DCD1	6	DSR1	
2	RXD1	7	RTS1	
3	TXD1	8	CTS1	
4	DTR1	9	RI1	
5	GND	—	_	

Подключение первого порта USB производится с помощью стандартного разъема USB 2.0 типа А. Обозначение разъема USB1 – Х2 на передней панели, Х1 на плате. Назначение контактов разъема USB1 приведено в таблице 7.

Таблица 7 Назначение контактов разъема USB1

Контакт	Сигнал
1	USB1_5VCC
2	USB_1N
3	USB_1P
4	GND

Подключение первого канала Ethernet производится с помощью стандартного разъема RJ-45. Обозначение разъема Ethernet 1 – X3 на передней панели, X20 на плате. Назначение контактов разъема Ethernet 1 приведено в таблице 8.

Гаолица о Г	гаолица в пазначение контактов разъема Ешептест			
Контакт	Сигнал	Контакт	Сигнал	
1	ETH1_TX+	5	GND_ETH1	
2	ETH1_TX-	6	ETH1_RX-	
3	ETH1_RX+	7	GND_ETH1	
4	GND_ETH1	8	GND_ETH1	

Таблица 8 Назначение контактов разъема Ethernet 1

4.1.3 Разъемы на плате

Подключение монитора VGA также возможно производить с помощью разъема X3, расположенного на плате. Назначение контактов разъема X3 приведено в таблице 9.

Таблица 9	Назначение контактов	разъема ХЗ
Контакт	Сигнал	
1	VSYNC	
2	HSYNC	
3	RED	
4	GREEN	
5	BLUE	
6	AGND	

Подключение 18-разрядного интерфейса LVDS для LCD панели производится через разъем X2. Назначение контактов разъема X2 приведено в таблице 10.

Контакт	Сигнал	Контакт	Сигнал
1	+3B	2	GND
3	LVDS_P0	4	LVDS_N0
5	LVDS_P1	6	LVDS_N1
7	LVDS_P2	8	LVDS_N2
9	LVDS_CLKP	10	LVDS_CLKN

Таблица 10 Назначение контактов разъема Х2

Подключение устройства IDE (HDD, CD-ROM) производится через разъем X10 с помощью стандартного шлейфного кабеля. Назначение контактов разъема приведено в таблице 11.

Таблица 11	Назначение контактов разъема Х10
------------	----------------------------------

Контакт	Сигнал	Контакт	Сигнал
1	IDE_RST#	2	GND
3	IDE_DAT7	4	IDE_DAT8
5	IDE_DAT6	6	IDE_DAT9
7	IDE_DAT5	8	IDE_DAT10
9	IDE_DAT4	10	IDE_DAT11

Контакт	Сигнал	Контакт	Сигнал
11	IDE_DAT3	12	IDE_DAT12
13	IDE_DAT2	14	IDE_DAT13
15	IDE_DAT1	16	IDE_DAT14
17	IDE_DAT0	18	IDE_DAT15
19	GND	20	-
21	IDE_DREQ	22	GND
23	IDE_IOW#	24	GND
25	IDE_IOR#	26	GND
27	IDE_RDY	28	GND
29	IDE_DACK#	30	GND
31	IDE_IRQ	32	IOCS16#
33	IDE_ADR1	34	-
35	IDE_ADR0	36	IDE_ADR2
37	IDE_CS0#	38	IDE_CS1#
39	DASP#	40	GND

Примечание – Сигнал DASP# подключен к светодиодному индикатору.

Подключение флоппи-дисковода FDD (НГМД) производится через разъем X12 с помощью адаптера LPT-FDD (ГФКП.468351.007). Назначение контактов разъема приведено в таблице 12.

Таблица 12 Назначение контактов разъема Х12			
Контакт	Сигнал	Контакт	Сигнал
1	-	2	DRVDEN
3	INDEX	4	HDSEL
5	TRACK0	6	DIR
7	WRTPRT	8	STEP
9	RDATA	10	GND
11	DSKCHG	12	GND
13	-	14	GND
15	-	16	GND
17	-	18	GND
19	DS0	20	GND
21	MOTOR0	22	GND
23	WDATA	24	GND
25	WGATE	26	_

Подключение клавиатуры и мыши PS/2 производится через разъемы X13. Назначение контактов разъема X13 приведено в таблице 13.

Таолица 15 Па	значение контактов ра
Контакт	Сигнал
1	+5B
2	KDATA
3	KCLK
4	GND
5	+5B
6	MDATA
7	MCLK
8	GND

контактов разъема X13 приведено в таблице 13. Таблица 13 Назначение контактов разъема X13 Подключение дискретных сигналов ввода-вывода (8 входов, 8 выходов) производится через разъем X14. Линии дискретного ввода-вывода подключаются непосредственно к линиям GPIO микросхемы Super I\O W83627HG фирмы Winbond.. Назначение контактов разъема X14 приведено в таблице 14.

КонтактСигналКонтактСигнал1GPOUT12GPIN13GPOUT24GPIN25GPOUT36GPIN37GPOUT48GPIN49GPOUT510GPIN511GPOUT612GPIN613GPOUT714GPIN715GPOUT816GPIN817GND18GND		1		
1 GPOUT1 2 GPIN1 3 GPOUT2 4 GPIN2 5 GPOUT3 6 GPIN3 7 GPOUT4 8 GPIN4 9 GPOUT5 10 GPIN5 11 GPOUT6 12 GPIN6 13 GPOUT7 14 GPIN7 15 GPOUT8 16 GPIN8 17 GND 18 GND	Контакт	Сигнал	Контакт	Сигнал
3 GPOUT2 4 GPIN2 5 GPOUT3 6 GPIN3 7 GPOUT4 8 GPIN4 9 GPOUT5 10 GPIN5 11 GPOUT6 12 GPIN6 13 GPOUT7 14 GPIN7 15 GPOUT8 16 GPIN8 17 GND 18 GND	1	GPOUT1	2	GPIN1
5 GPOUT3 6 GPIN3 7 GPOUT4 8 GPIN4 9 GPOUT5 10 GPIN5 11 GPOUT6 12 GPIN6 13 GPOUT7 14 GPIN7 15 GPOUT8 16 GPIN8 17 GND 18 GND	3	GPOUT2	4	GPIN2
7 GPOUT4 8 GPIN4 9 GPOUT5 10 GPIN5 11 GPOUT6 12 GPIN6 13 GPOUT7 14 GPIN7 15 GPOUT8 16 GPIN8 17 GND 18 GND	5	GPOUT3	6	GPIN3
9 GPOUT5 10 GPIN5 11 GPOUT6 12 GPIN6 13 GPOUT7 14 GPIN7 15 GPOUT8 16 GPIN8 17 GND 18 GND	7	GPOUT4	8	GPIN4
11 GPOUT6 12 GPIN6 13 GPOUT7 14 GPIN7 15 GPOUT8 16 GPIN8 17 GND 18 GND	9	GPOUT5	10	GPIN5
13 GPOUT7 14 GPIN7 15 GPOUT8 16 GPIN8 17 GND 18 GND	11	GPOUT6	12	GPIN6
15 GPOUT8 16 GPIN8 17 GND 18 GND	13	GPOUT7	14	GPIN7
17 GND 18 GND	15	GPOUT8	16	GPIN8
	17	GND	18	GND

Таблица 14 Назначение контактов разъема Х14

Подключение внешнего источника питания +5В возможно производить через разъем X16. Назначение контактов разъема X16 приведено в таблице 15.

Таблица 15 Назначение контактов разъема Х16

Контакт	Сигнал
1	+5B
2	+5B
3	GND
4	GND

Подключение внешнего источника сигнала РМЕ производится через разъем Х6. Назначение контактов разъема Х6 приведено в таблице 16.

Таблица 16 Назначение контактов разъема У	K6
---	----

Контакт	Сигнал
1	PME#
2	GND

Подключение внешнего сигнала включения PWR_BUT производится через разъем X7. Назначение контактов разъема X7 приведено в таблице 17.

Таблица 17 Назначение контактов разъема Х7

Контакт	Сигнал
1	PWR_BUT
2	GND

Подключение внешнего сигнала аппаратного сброса RESET_WORK производится через разъем X8. Назначение контактов разъема X8 приведено в таблице 18.

Таблица 18 Назначение контактов разъема Х8

Контакт	Сигнал
1	RESET_WORK
2	GND

Для обеспечения сохранности данных часов реального времени (RTC) при выключенном питании модуля возможно подключение литиевой батареи питания с напряжением 3В к разъёму X9. Назначение контактов разъёма X9 приведено в таблице 19.

1 actinga 15	reason reason by the second part of the second part of the second s
Контакт	Сигнал
1	3 B (+)
2	GND (-)

Таблица 19 Назначение контактов разъема Х9

4.2 Установка перемычек (джамперов)

Перемычки JP1, JP2 определяют загрузку конфигурации (Bootstrap) во время наличия сигнала RESET:

– Перемычка **JP1** определяет режим работы – в рабочем режиме должна быть установлена, в режиме отладки снята.

– Перемычка **JP2** определяет тактовую частоту процессора и оперативной памяти:

При установленной перемычке JP2 частота процессора и ОЗУ задается в BIOS SETUP. Возможные значения частоты процессора/ частоты ОЗУ в МГц следующие: 500/333 (по умолчанию), 400/333, 400/266, 333/333, 300/266.

При снятой перемычке JP2 значение частоты процессора/ частоты ОЗУ – 266/266 МГц.

Перемычка **JP5** задает режим работы Master/Slave для памяти Flash NAND, подключённой к интерфейсу IDE. Если перемычка установлена – режим Master, не установлена – режим Slave.

Перемычка **JP3** защищает от записи память SFRAM. Если перемычка установлена – запись в SFRAM невозможна, при этом установки, произведенные в BIOS SETUP, не сохраняются после выключения питания модуля.

Перемычки **JP8** и **JP9** определяют режимы работы порта COM3. Положение перемычек и соответствующие этому положению режимы работы COM3 приведены в таблице 21.

Таблица 20

JP8	JP9	Режим работы СОМ3
любое	не установлена	RS232
не установлена	установлена	RS422
установлена	установлена	RS485

Перемычка **JP7** подключает согласующий резистор 120 Ом между дифференциальными линиями интерфейсов RS422 и RS485 для порта COM3.

4.3 Диагностические светодиоды

В модуле установлены восемь диагностических светодиодов: VD11, VD12, VD13, VD15, VD17...VD20 (расположение см. на рисунке 4). Светодиоды предназначены для индикации состояний и режимов работы модуля. Функциональное назначение светодиодов модуля (с указанием в скобках цвета индикации) приведено в таблице 21.

Таблица 21

Светодиод	Наименование	Описание
-----------	--------------	----------

VD11	IDE act	Светодиод активности (обмена) по интерфейсу IDE для внешнего устройства НЖМД (оранжевый)	
VD12	ИСПР 1	Пользовательский светодиод на передней панели	
VD13	ИСПР 2	Пользовательский светодиод на передней панели	
VD15	Power	Светодиод питания +5В (зелёный)	
VD17	Ethernet 1 act	Светодиод активности 1 канала Ethernet (зелёный)	
VD18	Ethernet 1 speed	Индикатор скорости 1 канала Ethernet (оранжевый): горит - скорость 100 Мбит/с, не горит - скорость 10 Мбит/с.	
VD19	Ethernet 2 act	Светодиод активности 2 канала Ethernet (зелёный)	
VD20	Ethernet 2 speed	Индикатор скорости 2 канала Ethernet (оранжевый): горит - скорость 100 Мбит/с, не горит - скорость 10 Мбит/с.	

Примечание – Управление светодиодами: ИСПР 1, ИСПР 2 осуществляется соответственно при помощи линий GPIO27, GPIO35 порта GPIO микросхемы Super I/O фирмы Winbond (W83627HF). Установка линий: GPIO27, GPIO35 в состояние логического "0" соответствует включению светодиодов ИСПР 1, ИСПР 2. Установка линий GPIO27, GPIO35 в состояние логической "1" соответствует выключению светодиодов ИСПР 1, ИСПР 2.

6 Распределение адресного пространства

Адресное пространство ввода/ вывода изделия представлено в таблице 22.

Диапазон адресов	Функция	Примечание
0000h - 000Fh	DMA1 контроллер	_
0020h - 0021h	PIC MASTER	-
0022h - 0023h	LX CONFIGURATION	_
0028h - 002Fh	LOCAL BUS	_
0040h - 005Fh	PIT	-
0060h - 006Fh	POST, Keyboard/Mouse	-
0070h - 007Fh	CMOS	-
0080h-008Fh	DMA PAGE REGISTERS	-
00A0h - 00BFh	PIC SLAVE	-
00C0h-00DFh	DMA2 контроллер	
00F0h - 00FFh	Сопроцессор	
0100h-01DFh	Резерв	
01F0h - 01F7h	PRIMARY IDE	
01F8h - 01FFh	Резерв	Недоступен
0200h-02DFh	Резерв	
02E0h - 02E7h	Резерв	Недоступен
02E8h - 02F7h	Резерв	
02F8h - 02FFh	COM2	
0300h-03AFh	Резерв	
03B0h-03DFh	VIDEO	
03E0h-03E7h	Резерв	
03E8h - 03EFh	COM3	
03F0h – 03F5h, 03F7h	Контроллер НГМД (FDD)	
03F8h - 03FFh	COM1	
0400h - 0CF7h	Резерв	
0CF8H – 0CFFH	РСІ шина	

Таблица 22

5 Прерывания

По умолчанию запросы прерывания формируются устройствами, входящими в состав изделия. Источники прерывания приведены в таблице 23.

IRQ	Устройства по умолчанию
IRQ0	Системный таймер
IRQ1	PS/2 клавиатура
IRQ2	Прерывание 8259
IRQ3	COM2
IRQ4	COM1
IRQ5	Ethernet / USB / PCI-устройства
IRQ6	НГМД (FDD)
IRQ7	-
IRQ8	RTC
IRQ9	ACPI
IRQ10	Ethernet / USB / PCI-устройства
IRQ11	Ethernet / USB / PCI-устройства
IRQ12	PS/2 мышь
IRQ13	Сопроцессор
IRQ14	IDE
IRQ15	COM3. COM4

т с ор	D	U	
	Распределение	уровнеи і	прерывании
1 аблица 25	таспределение	JPobliell I	npep bibannin

Примечание – Для реализации аппаратных прерываний от портов COM1 и COM2 необходимо предварительная настройка. Описание см. в Приложении.

6 Программа настройки BIOS (BIOS SETUP)

При помощи программы настройки BIOS (BIOS SETUP) можно изменять параметры BIOS и управлять специальными режимами работы модуля. Эта программа использует систему меню для внесения изменений, а также для включения или отключения специальных функций.

6.1 Main Menu (Главное меню)

Для запуска программы BIOS SETUP необходимо включить или перезагрузить систему.

Если после появления приглашения: Hit if you want to run SETUP

нажать клавишу , то на экране появляется «Main Menu» (Главное меню). Назначение разделов Главного меню приведено в таблице 24.

Примечание – При работе с удалённой консолью для выхода в BIOS SETUP необходимо использовать комбинацию клавиш «Ctrl+C» на клавиатуре ПК, где запущена терминальная программа.

Разделы Главного меню	Назначение
Basic CMOS Configuration	Настройка основных параметров BIOS: раздел позволяет перейти к меню для настройки основных параметров системы, таких как назначение имён дисковых накопителей и порядок их следования, порядок загрузки и т.д.
Features Configuration	Дополнительные настройки: раздел позволяет включать/выключать поддержку ACPI, UDMA и т.д.
Custom Configuration	Пользовательские настройки: раздел позволяет настроить уровни прерываний устройств, указать размер выделяемой из системной видеопамяти, настроить частоту микропроцессора и ОЗУ и т.д.
PnP Configuration	Hacтройка Plug-and-Play: раздел предоставляет доступ к управлению назначением пре- рываний IRQ и DMA, относящихся к Plug-and-Play
Start RS232 Manufacturing Link	Запуск режима RS232 Manufacturing Link: раздел позволяет подключиться к ПК по каналу RS232 в ре- жиме удалённой консоли для модификации Flash BIOS или эмуляции дисковых устройств
Reset CMOS to last known values	Сброс параметров настройки BIOS к последним значениям: раздел позволяет сбросить параметры BIOS к значениям, с ко- торыми система была включена в последний раз
Reset CMOS to factory defaults	Сброс параметров настройки BIOS к значениям, установленным производителем по умолчанию
Write to CMOS and Exit	Запись параметров настройки в память и окончание работы с программой BIOS SETUP
Exit without changing CMOS	Выход из программы BIOS SETUP без записи изменений параметров

Таблица 24

Для перемещения по разделам Главного меню следует использовать клавиши управления курсором <Вверх> или <Вниз>. Для выбора нужного раздела Главного меню и перехода к соответствующему подменю следует использовать клавишу <Enter>. Для возврата к Главному меню следует использовать клавишу <Esc>. Для выбора пункта меню внутри разделов Главного меню следует использовать клавиши yправления курсором <Bверх>, <Bниз>, <Bправо> и <Bлево>, а также клавиши <Enter>. Для изменения параметра следует использовать клавиши <PgUp>, <PgDn>, <+> и <->. Для возврата к Главному меню следует использовать клавиши <Esc>.

Примечание – При работе с удалённой консолью для изменения параметра вместо клавиш <PgUp>, <PgDn>, <+> или <-> необходимо использовать клавишу <Пробел>.

6.2 Basic CMOS Configuration (Настройка основных параметров BIOS)

Назначение пунктов меню раздела «Basic CMOS Configuration)) приведено в таблице 25.Таблица 25Пункты меню раздела «Basic CMOS Configuration»

Пункт меню	Назначение		
	Параметр	Описание	
Date	Ммм ЧЧ, ГГГГ	Установка даты (в формате параметра)	
Time	ЧЧ :ММ:СС	Установка времени (в формате параметра)	
	Поря	док загрузки операционной системы	
First Boot From	A:	Загрузка с НГМД	
	C:	Загрузка с диска С: (по умолчанию)	
	CDROM	Загрузка с накопителя CD-ROM	
E1 Error Wait	Ожидание нажатия	клавиши F1 при возникновении ошибок во время POST	
1 1 Lifor Walt	Enabled,	Разрешено (по умолчанию),	
	Disabled	Запрещено	
	Положение переключателя вспомогательной клавиатуры (NumLoc		
NumLock	после загрузки		
	Enabled,	Разрешено,	
	Disabled	Запрещено (по умолчанию)	
IDE DRIVE	Конфигурация дисковых накопителей (НЖМД), подключаемых через ин-		
GEOMETRY:	терфейс IDE: Primary Master (Master) и Primary Slave (Slave)		
	Not installed	Накопитель не подключен (по умолчанию)	
	User Type	Геометрия диска указывается пользователем в полях:	
		Sect, Hds и Cyls	
Master Slava	Autoconfig, Normal	Автоматическое определение геометрии без трансля-	
Master, Slave	Autoconfig I BA	ции физических параметров диска	
	Autoconing, LDA	физических параметров лиска в линейный адрес	
	Autoconfig, LARGE	Преобразование параметров диска по алгоритму	
	6,	фирмы Phoenix	
	CDROM	Подключение накопителя CD-ROM	
	Поддержка накопителей USB		
USB Hard Drive(s)	1 Drive	1 устройство	
	2 Drives	2 устройства	
	Disabled	Накопитель USB не используется (по умолчанию)	

Пункт меню	Назначение	
	Параметр	Описание
Onboard Flash Disk	Допустимо любое значение параметра	
	Назначение дис	кового накопителя (с присвоением имени С:)
1 st Disk (Disk C:)	IDE Master,	IDE Master (по умолчанию)
	IDE Slave,	
	USB Hard Drive	
	Настр	ойка типа НГМД
	Not Instaled	НГМД не подключен (по умолчанию,
Floppy Disk Drive	360 kb, 5,25";	Параметры подключенного НГМД
	1,2 Mb, 5,25";	
	720 kb, 3,5";	
	1,44 Mb, 3,5";	
	2,88 Mb, 3,5"	

6.3 Features Configuration (Дополнительные настройки)

Назначение пунктов меню раздела «Features Configuration) приведено в таблице 26. Таблица 26

Пункт меню	Назначение	
	Параметр	Описание
	Поддержка режима ACPI (используется в OC Windows, Linux)	
ACPI 1.0	Enabled	Разрешено (по умолчнию)
	Disabled	Запрещено
	Поддержка режи	Ma POST (Power On Self Test)
POST Memory Manager	Enabled	Разрешено
	Disabled	Запрещено (по умолчанию)
	Поддержка наког	ителей USB
USB Mass Storage	Enabled	Разрешено (по умолчанию)
	Disabled	Запрещено
Advanced Derven	Поддержка режима АРМ	
Advanced Power	Enabled	Разрешено (по умолчнию)
Management	Disabled	Запрещено
	Режим UDMA дл	я устройств IDE
IDE UDMA	Enabled	Разрешено
	Disabled	Запрещено (по умолчанию)
	Поддержка USB2	2.0
USB20	Enabled	Разрешено
	Disabled	Запрещено (по умолчанию)

6.4 Custom Configuration (Настройки пользователя)

Назначение пунктов меню раздела «Custom Configuration) приведено в таблице 27.

Таблица 27

Π	Назначение		
Пункт меню	Параметр	Описание	
	Первичный видеоадаптер		
Primary video device	Auto	При отсутствии внешнего видеоадаптера –	
		встроенный	
	LX Graphics	Встроенный видеоадаптер	
	PCI VGA Card	Внешний РСІ видеоадаптер	
	none	Видео отсутствует	
	Установка объём	иа видеопамяти (выделяемой из системного ОЗУ)	
	встроенного графич	еского ядра микропроцессора, МВ (Мбайт)	
Geode LX Graphics	4, 8, 12, 16, 20, 24,	32 MB – по умолчанию	
	28, 32, 36, 40, 44,		
	48, 52, 56, 60		
	Disabled	Запрещено (графическое ядро отключено)	
	Использование г	анели LCD	
Video device mode	Disabled	Панель LCD не используется (по умолчанию)	
	320x240,	Разрешение экрана для панели LCD	
	640x480,		
	800x600,		
	1024x768		
Video nofnoch noto	Частота обновле	ния кадров для панели LCD, Hz (Гц)	
video refresh rate	60, 70, 75, 85, 100	60 Hz – по умолчанию	
	Полярность строчной синхронизации		
Horizontal sync	positive	положительная (по умолчанию)	
	negative	отрицательная	
	Полярность кадровой синхронизации		
Vertical sync	positive	положительная (по умолчанию)	
	negative	отрицательная	
	Тип подключаемой панели LCD		
Video panel type	TFT	Панель с интерфейсом ТFT (по умолчанию)	
	LVDS	Панель с интерфейсом LVDS	
	Порт консольног	го ввода (INT 16h BIOS)	
Console Input	COM	Ввод из СОМ-порта	
	KBD	Ввод с клавиатуры	
	COM+KBD	Ввод с клавиатуры и из СОМ-порта одновре-	
		менно (по умолчанию). Параметры терминала	
		должны быть: 115200, n, 8, 1	
	Порт консольно	Порт консольного вывода (INT 10h BIOS)	
Console Output	COM	Вывод в СОМ-порт	
	VGA	Вывод в видеоадаптер	
	COM+VGA	Вывод в видеоадаптер и СОМ-порт в одновре-	
		менно (по умолчанию). Параметры передачи:	
		[115200, n, 8, 1	
	Поддержка UDN	1A5	
IDE UDMA5	Enabled	Включена	
	Disabled	Отключена (по умолчанию)	

Π	Назначение			
Пункт меню	Параметр	Описание		
	Поддержка клав	Поддержка клавиатуры и мыши USB		
Legacy USB support	Enabled	Разрешено (по умолчанию)		
Legacy USB support	Disabled	Запрещено		
	Auto	Автоматическое определение		
	Установка такто	вой частоты микропроцессора и ОЗУ, MHz		
CPU/GLIU speed	300/266, 333/333,	Значения частот (частота микропроцессора/ча-		
1	400/200, 400/333	500/333 MHz = 10 умолнанию		
	Bruoueuue/pur			
LPT/FDC	LPT	Устройство LPT (отсутствует в данной конфигу-		
		рации модуля)		
	FDC	Устройство НГМД (FDD)		
	Disabled	Запрещено (по умолчанию)		
	Тип периодичесн	ких запросов SMI (системные немаскируемые пре-		
	рывания)			
Periodic SMI	Non-maskable	Немаскируемые (по умолчанию)		
	Maskable	Маскируемые		
	Disabled	запрещено		
Dariadia SMI Internal	<u>Значение интерв</u>	ала периодических запросов SMI, ms		
Periodic Sivii intervai	55, 110, 220, 440, 880, 1760	55 ms – по умолчанию		
	Включение/выкл	иочение портов СОМЗ. СОМ4		
COM3 & COM4	Enabled	Разрешено (по умолчанию)		
	Disabled	Запрещено		
	Назначение прер	Назначение прерывания устройствам PCI использующим линии		
PCI INT A Assignment	INT A, INT B, INT C	INT A, INT B, INT C, INT D		
PCI INT B Assignment	Auto	Автоматическое назначение линии прерывания		
PCI INT C Assignment	mor.	(по умолчанию)		
PCI INT D Assignment	IRQ5	Линия - IRQ5		
	IRQ10 IRQ11	Линия - IRQ10 Пиния – IRQ11		
	Режим работы I РТ			
LPT Mode	ции модуля	nopra – ne nikeer sna lennis is gannon konqui ypa		
IRQ3	COM2	Порт СОМ2 (по умолчанию)		
IRQ4	COM1	Порт СОМ1 (по умолчанию)		
IRQ5	PCI	РСІ-устройство (по умолчанию)		
IRQ6	FDC	Контроллер FLOPPY (по умолчанию)		
IRQ7	LPT	Порт LPT (по умолчанию) – не используется		
IRQ9	ACPI	Контроллер АСРІ (по умолчанию)		
IRQ10	PCI	РСІ устройство (по умолчанию)		
IRQ11	PCI	РСІ устройство (по умолчанию)		
IRQ12	PS2 Mouse	Мышь PS2 (по умолчанию)		
IRQ14	IDE	Первичный контроллер IDE (по умолчанию)		
IRQ15	COM3/COM4	Порты СОМ3, СОМ4 (по умолчанию)		

6.5 Specific Configuration

Меню раздела «Specific Configuration» отвечает за установку направления передачи данных порта COM3 в режиме RS422/485. Пункт меню «RS485 Default» имеет значение «Transmit» (по умолчанию) и «Receive».

Значение «Transmit» (Передача) включает передатчик СОМЗ и при включении модуля порт СОМЗ настроен на передачу данных (используется при полнодуплексном подключении в режиме RS422).

Значение «Receive» (Прием) выключает передатчик СОМЗ и при включении модуля порт СОМЗ настроен на приём данных (используется при полудуплексном подключении в режиме RS485).

6.6 PnP Configuration (Настройка Plug-and-Play)

Вид меню раздела «PnP Configuration» (все пункты установлены по умолчанию) представлен в таблице 29.

Данный раздел предоставляет доступ к управлению назначением прерываний IRQ и DMA, относящихся к функции Plug-and-Play. Настройки пунктов меню имеют только два возможных значения параметра: «Enabled» (разрешено) или «Disabled» (запрещено).

Таблица	28
---------	----

Пункт меню	Параметр	Пункт меню	Параметр
Enable PnP Support	Enable	Enable PnP O/S	Enable
Assign IRQ 0 to PnP	Disabled	Assign IRQ 8 to PnP	Disabled
Assign IRQ 1 to PnP	Enable	Assign IRQ 9 to PnP	Disabled
Assign IRQ 2 to PnP	Enable	Assign IRQ 10 to PnP	Disabled
Assign IRQ 3 to PnP	Enable	Assign IRQ 11 to PnP	Enable
Assign IRQ 4 to PnP	Disabled	Assign IRQ 12 to PnP	Enable
Assign IRQ 5 to PnP	Enable	Assign IRQ 13 to PnP	Enable
Assign IRQ 6 to PnP	Disabled	Assign IRQ 14 to PnP	Enable
Assign IRQ 7 to PnP	Disabled	Assign IRQ 15 to PnP	Enable
Assign DMA 0 to PnP	Disabled	Assign DMA 4 to PnP	Enable
Assign DMA 1 to PnP	Disabled	Assign DMA 5 to PnP	Enable
Assign DMA 2 to PnP	Disabled	Assign DMA 6 to PnP	Disabled
Assign DMA 3 to PnP	Enable	Assign DMA 7 to PnP	Enable

6.7 Shadow configuration (Настройка теневой памяти)

Вид меню раздела «Shadow Configuration» (все пункты установлены по умолчанию) представлен в таблице 30.

Пункт меню	Параметр	Пункт меню	Параметр
Shadowing	Chipset	Shadow 16KB ROM at C000	Enable
Shadow 16KB ROM at C400	Enable	Shadow 16KB ROM at C800	Disabled
Shadow 16KB ROM at CC00	Disabled	Shadow 16KB ROM at D000	Disabled
Shadow 16KB ROM at D400	Disabled	Shadow 16KB ROM at D800	Disabled
Shadow 16KB ROM at DC00	Disabled	Shadow 16KB ROM at E000	Enable
Shadow 16KB ROM at E400	Enable	Shadow 16KB ROM at E800	Enable
Shadow 16KB ROM at EC00	Enable	Shadow 16KB ROM at F000	Enable

Таблица 29

Данный раздел программы BIOS SETUP предоставляет возможность (если выбрано значение параметра «Enabled») перезаписи содержимого BIOS модулей расширения в оперативную память блоками по 16 Кбайт при инициализации модуля.

В пункте меню «Shadowing» имеется возможность выбора значения параметра: «Chipset» или «None». Все остальные настройки пунктов меню имеют только два возможных значения параметра: «Enabled» (Paspeшeno) или «Disabled» (Запрещено).

6.8 Остальные разделы Главного меню

6.8.1 Reset CMOS to last known values (Сброс параметров настройки BIOS к последним значениям)

При выборе раздела Главного меню «Reset CMOS to last known values» реализуется команда сброса памяти CMOS в последнее известное (до запуска программы BIOS SETUP) состояние. Эта команда позволяет отменить настройки BIOS, сделанные пользователем при данном запуске программы BIOS SETUP.

После выбора команды «Reset CMOS to last known values» в Главном меню на экран выводится сообщение:

Reset CMOS to last known values? (Y/N):

(Сбросить параметры CMOS к последним известным значениям? (Да/Нет))

Нажатие клавиши "Y" (Да) сбрасывает параметры, хранящиеся в памяти CMOS, к последним известным значениям, и возвращает в Главное меню. Нажатие клавиши "N" (Нет) возвращает в Главное меню без внесения изменений.

6.8.2 Reset CMOS to factory defaults (Сброс к значениям по умолчанию)

При выборе раздела Главного меню «Reset CMOS to factory defaults» реализуется команда сброса параметров настройки BIOS к значениям, установленным производителем по умолчанию.

После выбора команды «Reset CMOS to factory defaults» в Главном меню на экран выводится сообщение:

Reset CMOS to factory defaults? (Y/N):

(Сбросить параметры CMOS к установленным производителем по умолчанию? (Да/Нет))

Нажатие клавиши "Y" (Да) сбрасывает параметры, хранящиеся в памяти CMOS, к установленным производителем по умолчанию, и перезагружает систему. Нажатие клавиши "N" (Нет) возвращает в Главное меню без внесения изменений.

6.8.3 Write to CMOS and Exit (Запись изменений параметров настройки BIOS в CMOS и выход)

При выборе раздела Главного меню «Write to CMOS and Exit» реализуется команда записи изменений параметров настройки BIOS в памяти CMOS и завершения работы с программой BIOS SETUP.

После выбора команды «Write to CMOS and Exit» в Главном меню на экран выводится сообщение:

Save Changes and Exit? (Y/N):

(Сохранить изменения и выйти? (Да/Нет))

Нажатие клавиши "Y" (Да) сохраняет изменение параметров настройки BIOS в памяти CMOS, завершает работу с программой BIOS SETUP и перезагружает систему. Нажатие клавиши "N" (Нет) возвращает в Главное меню без внесения изменений.

При перезагрузке системы BIOS осуществляет её конфигурирование в соответствии с параметрами настройки BIOS, сохранёнными в CMOS. В случае сбоя при загрузке системы необходимо перезагрузить систему и нажать клавишу для запуска программы BIOS SETUP. В BIOS SETUP можно дополнительно произвести коррекцию значений параметров, которые привели к сбою при загрузке системы, а также сброс параметров настройки BIOS к значениям, установленным производителем по умолчанию ("factory defaults").

6.8.4 Exit without changing CMOS (Выход без записи изменений в CMOS)

При выборе раздела Главного меню «Exit without changing CMOS» реализуется команда завершения работы с программой BIOS SETUP без сохранения изменений параметров настройки BIOS в памяти CMOS (остаются неизменными до запуска программы BIOS SETUP).

После выбора команды «Exit without changing CMOS» в Главном меню на экран выводится сообщение:

Exit Without Saving Changes? (Y/N): (Выйти без записи изменения? (Да/Нет))

Нажатие клавиши "Y" (Да) завершает работу с программой BIOS SETUP без сохранения изменений параметров настройки BIOS в памяти CMOS и перезагружает систему. Нажатие клавиши "N" (Нет) возвращает в Главное меню.

ПРИЛОЖЕНИЕ

Программное обеспечение

1 Настройка работы по прерываниям портов СОМ1 и СОМ2

Для реализации аппаратных прерываний от портов COM1 и COM2 необходимо при включении изделия однократно выполнить следующие действия:

- Установить бит TX_DFR в регистре Modem/Mode Control Register (MCR), записав логическую 1 в 3 разряд;

- Сбросить регистр прерываний, Interrupt Enable Register (IER), записав в регистр значение 00h;

- Записать в регистр Interrupt Enable Register (IER) значение 01h.

Описание регистров см. в документации «AMD Geode™ CS5536 Companion Device Data Book» (33238G_cs5536_db.pdf) в разделе 5.12.

2 Настройка работы устройств СРСІ в слотах 2 и 3

Для обеспечения работы устройств СРСІ в слотах 2 и 3 необходимо следующее.

- Устройству CPCI slot 2 установить аппаратное прерывание с номером 10. Это можно реализовать, записав в пространство конфигурации PCI (PCI Configuration Space) в регистр прерываний (Interrupt Line) значение 10;

- Устройству CPCI slot 3 установить аппаратное прерывание с номером 11. Это можно реализовать, записав в пространство конфигурации PCI (PCI Configuration Space) в регистр прерываний (Interrupt Line) значение 11;

Для выполнения выше сказанного можно использовать программу «set_irq.exe».

Программа «set_irq.exe» предназначена для настройки аппаратных прерываний устройств СРСІ. Программа предназначена для работы в операционной системе MS-DOS 6.22. С другими ОС и версиями MS-DOS программа не тестировалась. Запуск программы рекомендуется производить с указанием параметров. В случае, когда параметры опущены, на экран будет выведена информация о работе с данной программой.

Параметры используемые программой:

dev – номер PCI устройства в шестнадцатеричном формате.

Irq – номер линии прерывания в десятичном формате.

Примечание – номер PCI устройства можно увидеть в таблице «PCI Device Table» в колонке «Dev».

Для применения программы «set_irq.exe» можно использовать следующие действия.

a) Скопировать «set_irq.exe» на системный диск;

б) На системном диске открыть файл «AUTOEXEC.BAT» в режиме редактирования и добавить следующую запись:

rem CPCI slot_2 IRQ

set_irq.exe 14 10

rem CPCI slot_3 IRQ

set_irq.exe 15 11

с) Сохранить изменения и завершить работу с редактором.